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The hierarchical reference theory and the self-consistent Ornstein-Zernike approximation are two liquid state
theories that both furnish a largely satisfactory description of the critical region as well as phase coexistence
and the equation of state in general. Furthermore, there are a number of similarities that suggest the possibility
of a unification of both theories. As a first step towards this goal, we consider the problem of combining the
lowest order � expansion result for the incorporation of a Fourier component of the interaction with the
requirement of consistency between internal and free energies, leaving aside the compressibility relation. For
simplicity, we restrict ourselves to a simplified lattice gas that is expected to display the same qualitative
behavior as more elaborate models. It turns out that the analytically tractable mean spherical approximation is
a solution to this problem, as are several of its generalizations. Analysis of the characteristic equations shows
the potential for a practical scheme and yields necessary conditions that any closure to the Ornstein-Zernike
relation must fulfill for the consistency problem to be well posed and to have a unique differentiable solution.
These criteria are expected to remain valid for more general discrete and continuous systems, even if consis-
tency with the compressibility route is also enforced where possible explicit solutions will require numerical
evaluations.
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I. INTRODUCTION

Both the self-consistent Ornstein-Zernike approximation
�SCOZA� �1–3� and the hierarchical reference theory �HRT�
�4� have been found to give very accurate results for fluids in
thermal equilibrium. In particular, the respective nonlinear
parabolic partial differential equations �PDEs� remain practi-
cal in the critical region, and their solution gives nonclassi-
cal, and partly Ising-like, critical indices. The PDEs them-
selves are derived by obtaining the equation of state in two
independent ways and using thermodynamic consistency to
fix a free parameter in the direct correlation function.

Although both approaches thus appear similar in a num-
ber of aspects, there are also marked differences: While both
make use of the compressibility route to thermodynamics,
SCOZA combines it with the energy route expression for the
internal energy, whereas HRT, inspired by momentum-space
renormalization group theory, relies on what might be called
the fluctuation route to the free energy instead. In addition to
the density �, the independent variables in the PDEs are,
therefore, the inverse temperature �=1/kBT and the
momentum-space cutoff Q, respectively. Starting from a ref-
erence system of known properties at vanishing � or at high
Q, the attractive interaction is then turned on by gradually
increasing its strength � �SCOZA� or by including its Fourier
component of wave number Q at constant temperature until
the full system is recovered in the limit Q→0.

In the present contribution, we want to investigate the
possibility of combining both approaches by imposing ther-

modynamic consistency of the internal and free energies to
obtain a differential formulation where both the strength of
the interaction and its Fourier components are added succes-
sively. This introduces an additional constraint so that a fur-
ther free parameter in the closure relation can be determined.
In combination with the compressibility route, there are then
two free parameters that may be used, e.g., to describe both
the range and the amplitude of a contribution to the direct
correlation function c�r�; it might then be possible to de-
scribe the long-ranged tail that c�r� is known to develop in
the critical region. However, our preliminary investigations
point to several difficulties with this approach near phase
coexistence. The crucial problem is the vastly different be-
havior of HRT and SCOZA in this part of the phase diagram:
HRT has a solution at all densities, but spinodal and binodal
coincide so that the two phases coexist at infinite compress-
ibility; SCOZA, on the other hand, gives distinct binodal and
spinodal curves, but does not have a solution inside the spin-
odal. At this point, it is unclear how these differences might
be resolved by a simple modification of the direct correlation
function. Even at temperatures above the critical one, �
��c, where full self-consistency should be attainable, we
will be confronted with differential equations that are of the
first order in temperature and cutoff and of the second order
in the density. The numerical solution of such a PDE can be
demanding.

To simplify our task and gain some insight, we here con-
sider a simplified lattice gas model, and we limit ourselves to
combining the energy and fluctuation routes without using
the compressibility at all. Then there is only one free param-
eter left that can be determined as a function of � and Q.
After introducing our model and establishing the PDE �Sec.
II�, we show that consistency is achieved with the mean
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spherical approximation �MSA� and several generalizations
of it �Sec. III�. The solution can, therefore, be given in closed
analytic form, but the price to pay for omission of the com-
pressibility is the presence of the MSA features, viz., “irregu-
lar” isotherms in the critical region and lack of a well-defined
critical behavior for the lattice gas case �5�.

In general, an analytical solution is also unlikely to be
known beforehand if other closures are used. In that case,
one should seek the solution numerically by integrating the
equations for the characteristic curves of the PDE. Especially
when the compressibility relation not considered here is in-
corporated, a numerical solution will be required, and we
expect the properties of the characteristics analyzed here to
be useful more generally. After establishing relations and im-
plications for more general situations �Sec. IV A�, we once
more turn to the MSA equations. It is found that the PDE
admits a more general solution. Usually, the reference system
also does not determine the solution at Q=0 for finite tem-
perature due to the behavior of the characteristics �Sec.
IV B�. A generalized version of the PDE that does not make
any assumptions on the form of the direct correlation func-
tion of the system at cutoff Q and inverse temperature �
other than that it depends on some unknown parameter func-
tion ��� ,Q� is considered in Sec. IV C. It is then found that
these deficiencies can be peculiar to the specific closure em-
ployed. Based on these findings, we finally state and consider
two complementary necessary conditions that a parametriza-
tion of the solution must fulfill for the consistency problem
to be well posed and physically reasonable �Sec. V�. These
conditions have the advantage that they can be checked in
the high temperature limit where significant simplifications
are possible. They are also sufficiently general to apply to
more realistic model systems, both discrete and continuous.
In view of the relation between the properties of a nonlinear
diffusion equation with two timelike parameters, on the one
hand, and the first-order PDE we consider in the present
contribution, on the other hand, the criteria found for the
selection of suitable closure relations remain relevant even
when the compressibility route to thermodynamics is also
taken into account.

II. ADAPTATION OF THEORY AND MODEL

A. Model

In the interest of simplicity, we here consider only a lat-
tice gas �or Ising model�. The main advantage of this choice
is that the core condition of vanishing pair distribution func-
tion g�r��=h�r��+1 affects only the single point at r��r��=0.
In addition, we assume a sufficiently long-ranged interaction
so that the anisotropy imposed by the lattice structure can be
neglected. Besides, an even more long-ranged tail appears in
the interaction for intermediate Q, cf. Ref. �6� and Appendix
D.1 of Ref. �7�. When following the HRT recipe of succes-
sively including Fourier components of the interaction, we
will therefore do so without regard to the geometry of the
Brillouin zone. In the same spirit, we will often speak of
finite or infinite cutoffs and wave numbers instead of speci-
fying the corresponding surfaces within the Brillouin zone
explicitly �8,9�, and we will also write Q� for the maximum

cutoff in the calculation. It is not expected that these simpli-
fications should affect the results qualitatively. Furthermore,
the main conclusions of Sec. V are manifestly independent of
these assumptions.

The system is assumed to differ by a perturbing attractive
interaction −��r�, ��r�	0, from a reference system of
known properties. In the lattice case, the simple hard core
lattice gas can serve as the reference system. We can then use
the inverse range � of the attractive interaction as a perturb-
ing parameter �10,11�. The zeroth-order contribution past the
reference system is the mean-field attractive van der Waals

term, corresponding to a pressure contribution of − 1
2 �̃�0��2,

where a tilde indicates Fourier transformed quantities. In
HRT, this corresponds to the zero-loop diagram �4�. To next
order in �, Hemmer found �10�

I = − C� ln�1 − 
̃�k�ṽ�k��d3k � �3 �1�

with

C =
1

2
� 1

2�
	3

,

ṽ�k� = ��̃�k� ,

� =
1

kBT
.

Here, I is −� times the first-order contribution to the Helm-
holtz free energy per unit volume, kB is Boltzmann’s con-
stant, and T is the temperature. The integral is to be extended
over the Brillouin zone of the lattice that we here assume to
be the simple cubic one for which C
d3k= 1

2 .
The function 
�r� is related to the direct and total corre-

lation functions, c0�r� and h0�r�, of the reference system �in-
dicated by the subscript 0� by


̃�k� = � + �2h̃0�k� =
�

1 − �c̃0�k�
. �2�

Here we have used the Ornstein-Zernike equation �12�

h�r�� = c�r�� + �� h�r� − r���c�r���d3r�, �3�

�1 + �h̃�k����1 − �c̃�k��� = 1.

In the lattice case, the integral is to be replaced with a sum.
In the limit �→0, the function ṽ�k� usually reduces to a

narrow peak of width � at k=0. In this limit, the expression
�1� is the exact correction to the mean-field result. In HRT,
this corresponds to the infinite sum of one-loop diagrams �4�.

The interaction ṽ�k� may also have a narrow peak of
width � at some other position, say, around k=Q. In r space,
this corresponds to an infinitely weak but oscillating interac-
tion with wave vector Q, and Eq. �1� is still exact in the limit
�→0. On the other hand, the renormalization procedure of

HRT consists of adding narrow pieces of �̃ of width −dQ
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	0 around shorter and shorter wave vectors Q at constant
temperature. With d3k=4�k2dk and after division by dQ, Eq.
�1� then becomes

�I

�Q
= 4�CQ2 ln�1 − 
̃�Q�ṽ�Q�� . �4�

This is also the first equation of the HRT hierarchy, provided

 is derived from the structure of the system at slightly
higher cutoff Q+ �dQ� rather than from the reference system
at Q�. Equation �4� is then formally exact, but it does not

specify how 
̃ changes as Fourier components of �̃ are
added and the cutoff Q approaches zero. The formal answer
to this problem is provided by the higher equations of the
HRT hierarchy or some other expansion for 
. In practical
applications of HRT, only Eq. �4� is used, and the evolution
of 
̃ is determined by introducing a free parameter into the
correlation functions and fixing it by the requirement of con-
sistency with the compressibility route.

One can also make a small change d�	0 in the inverse
temperature and so effectively increase the interaction by an

amount −dṽ�k�= �̃�k�d�. Taking the limit d�→0, we obtain

− �u1 �
�I

��
= C� 
̃�k��̃�k�

1 − 
̃�k�ṽ�k�
d3k . �5�

The quantity u1 is nothing but the configurational internal
energy per particle beyond the zeroth-order mean-field term
�besides a self-energy term − 1

2��0� included here from the �
term in 
� due to the structure or correlation function given
by

� + �2h̃�k� =

̃�k�

1 − 
̃�k�ṽ�k�
. �6�

With 
 given by Eq. �2�, this is exact only in the limit �
→0, where the reference system is recovered. At higher �, it
is only the first-order correction in � for the long-range part
of the pair correlation function �10,11�. To higher order, or at
finite �, it is again not obvious how 
̃�k� changes with tem-
perature. Here the SCOZA recipe is to introduce some pa-
rameter into the closure that is also fixed by the requirement
of consistency with the compressibility route.

B. Specialization to lattice gas

In the case of a lattice gas or the Ising model, the above
expressions are simpler. The direct correlation function for
the reference system vanishes except at r=0 so that 
̃�k� is
constant, 
̃�k��
; and from the pressure p=−ln�1−�� /� of
the hard core lattice gas serving as reference system, we
obtain its value as


 = 
̃�0� � �1

�

��p

��
	−1

= ��1 − �� . �7�

As a simple approximation, we can now replace the 
 of Eq.
�7� by some effective value 
e that may be determined by
imposing thermodynamic consistency between Eqs. �4� and
�5�; in general, 
e will be a function of � and Q. Such a

change may cause the core condition h�0�=−1 to be violated,
which might be corrected by the introduction of an additional
parameter. For the qualitative features we are interested in
here, however, the core condition is not expected to be im-
portant, and we do not impose it below �13�.

As Fourier components are added to the interaction at
successively smaller cutoff Q, the interaction vanishes for
k�Q �except for the mean-field term at k=0�, and the inte-
gral in Eq. �5� must be restricted to that part of the Brillouin
zone where k
Q. Furthermore, a small change dQ in the
cutoff corresponds to the addition of a weak long-ranged
oscillating tail in r space, which also contributes at r=0. By
setting the potential � at r=0 equal to zero, the correspond-
ing unphysical contributions to the internal energy from
within the hard core can be avoided approximately, and ex-
actly in the limits Q→Q� and Q→0, even when the core
condition is not fulfilled. With these considerations and using
spherical symmetry, Eqs. �4� and �5� become

�I

�Q
= 4�CQ2 ln�1 − z�̃�Q�� , �8�

�I

��
= 4�

C
�
�

k	Q

z�̃�k�

1 − z�̃�k�
k2dk

with

z = 
e� . �9�

The above equations define a PDE for 
e�� ,Q� that is to be
solved for all Q
0, �
0. In particular, the solution should
give the structural and thermodynamic properties of the tar-
get system at Q=0 and all �
0. In order to turn this into a
well-defined problem, we also have to impose some bound-
ary conditions. The natural choice is to demand that the ref-
erence system �
e=
� should be recovered at �=0 and at
Q=Q�. Whether this is sufficient to determine the solution
throughout the domain of the PDE, however, is not obvious
and depends not only on the general consistency problem but
also on the particular closure �the replacement of 
 by 
e�
and the model chosen. We will return to this point in greater
detail in Sec. IV.

At first sight, an analytic solution of the given equations is
not obvious. But as we will show in Sec. III, the MSA solu-
tion and generalizations thereof indeed fulfill Eq. �8�. On the
other hand, the multiplicity of solutions found already indi-
cates that the reference system boundary conditions �that are
fulfilled in all cases� do not determine a unique solution, cf.
Secs. III B and IV B.

III. MSA AND MSA-LIKE SOLUTIONS

A. Specific solution

The internal energy corresponding to the MSA correlation
function can be integrated explicitly to yield the free energy
by utilizing general MSA expressions �3�. The result is
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I = − 4� C�
k	Q

ln�1 − z�̃�k��k2dk + J −
1

2
ln�1 + 2J� .

�10�

Here J is the integral appearing in Eq. �8�,

J = �
�I

��
= 4� C�

k	Q

z�̃�k�

1 − z�̃�k�
k2dk , �11�

and the core condition determines z as

z =
�


1 + 2J
,


 = ��1 − �� . �12�

By differentiation of Eq. �10� with respect to � and Q and
using Eqs. �11� and �12�, one finds that Eq. �8� is fulfilled.

The pair correlation function consistent with solution
�10�–�12� is obtained from Eq. �6� by replacing 
̃�k� by 
e

=z /� and restricting the interaction to k	Q,

� + �2h̃�k� =
z/�

1 − z�̃�k���k − Q�
,

where � is Heaviside’s function. Integrating the above over
the Brillouin zone and using Eq. �11�, one easily obtains

� + �2h�0� =
z

�
�1 + 2J� = 
 = � − �2,

which shows that the core condition is fulfilled.

B. More general solution

The MSA solution just discussed is one specific solution
of Eq. �8�. A more general solution is suggested by previous
work on the resummation of � ordering for fluids �5,14�, a
procedure that transforms the serious divergence at the
mean-field critical point into MSA-type criticality while
maintaining self-consistency between the free and internal
energies.

The generalized solution is then

I = − C�
k	Q

ln�1 − 
eṽ�k��d3k − �
n=1

�
n

n + 1
AnKn+1 �13�

with �z=�
e�

K =
J


e
= C�

k	Q

ṽ�k�
1 − 
eṽ�k�

d3k ,


e = 
 + �
n=1

�

AnKn. �14�

Here the coefficients An are independent of � and Q and
implicitly define 
e. The An must be fixed by some suitable
boundary conditions. These must be imposed at finite tem-
perature and cutoff as K vanishes at �=0 and at Q=Q�. This

shows that the reference system alone does not define a
unique solution in the present case, cf. end of Sec. II B. The
MSA solution �10� corresponds to the more general Eq. �13�
with one specific choice of the An. By differentiation, it is
easily verified that the above expression for I, like expression
�10�, solves both equations �8�.

C. Wave number dependent direct correlation function

Solution �13� can easily be extended to some very specific
k dependent 
e and z. Replacing 
e by 
̃e�k�, the Fourier
transform of 
e�r� that now extends to outside the core, we
can write


e�r� = 
��r�� + �
n=1

�

An�r�K�r�n. �15�

This corresponds to graphs with n parallel K�r� bonds.
K�r� is the chain bond with renormalized hypervertex 
e�r�,
and its Fourier transform is

K̃�k� =
1

2

ṽ�k�
1 − 
̃e�k�ṽ�k�

��k − Q� , �16�

the generalization of the integrand in Eq. �14�. Equation �13�
now changes into

I = − C�
k	Q

ln�1 − 
̃e�k�ṽ�k��d3k

− �
n=1

�
n

n + 1
� An�r�K�r�n+1d3r , �17�

and the PDE �8� becomes

�I

�Q
= 4�CQ2 ln�1 − 
̃e�Q�ṽ�Q�� ,

�I

��
= 4�

C
�
�

k	Q


̃e�k�ṽ�k�
1 − 
̃e�k�ṽ�k�

k2dk . �18�

As mentioned at the beginning of Sec. II, we neglect the
lattice structure for our simplified model. Of course, for a
true lattice system ��r�� in Eq. �15� should be a Kronecker �
at the origin, and the spatial integral in Eq. �17� should be a
lattice sum.

The above solution is suggested by the work of Høye and
Olaussen on the two-dimensional Coulomb gas where the
well-known Kosterlitz-Thouless phase transition was evalu-
ated on the basis of a graph expansion �15,16�.

Again it can be verified by differentiation that expression
�17� solves Eq. �18� in the same way expression �13� solves
Eq. �8�. To do so, one also needs the identity

� f�r�g�r�d3r = 2C� f̃�k�g̃�k�d3k .
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IV. CHARACTERISTICS OF THE DIFFERENTIAL
EQUATIONS

A. First-order PDEs and characteristics

So far, we have only considered specific cases where ex-
act solutions are known. In more general situations, the char-
acteristics can be used. These are curves along which the
PDE of interest is equivalent to a set of coupled ordinary
differential equations. In the case of a first-order PDE con-
sidered here, the solution can always be obtained by integrat-
ing the characteristic equations, starting from some point
where the solution is known from some boundary condition.
This is exact and does not incur any loss of information or
generality, and it generates a solution that is necessarily dif-
ferentiable along the characteristic.1

Clearly, the solution along a full characteristic depends on
only a single point at the boundary. This reflects the well-
known capacity of first-order PDEs for discontinuous solu-
tions. Another way in which discontinuities may arise is
from crossings of characteristic curves: the solution then be-
comes multivalued, and a resolution restoring uniqueness
naturally leads to a shock where the solution is no longer
differentiable. Other complementary difficulties that one may
encounter are rarefactions, i.e., regions not entered by any
characteristics. In this case, the solution is not defined there,
although there is often a natural weak formulation of the
PDE that can be used instead.

In the present work, we consider consistency of the free
and internal energies at inverse temperature � when gradu-
ally turning on Fourier components of the interaction at ever
smaller wavelength Q. Neither shocks nor rarefactions are
expected on physical grounds, i.e., the solution of the PDE
should both exist and be differentiable for �
0 and Q
0,
at least away from the critical point and outside the spinodal.
Using subscripts to denote partial derivatives, a PDE such as
Eq. �8� is naturally written in the form

�x�x,y� = X„x,y ;��x,y�… ,

�y�x,y� = Y„x,y ;��x,y�… .

Here � is an unknown function of the independent variables
x and y. As we will see, these equations imply a first-order
PDE for �, the solution of which also gives the quantity of
interest, �.

The above relations are not in the standard form
F�x ,y ,� ,�x ,�y�=0 for a first-order PDE. The usual ex-
pressions for the characteristics are thus not directly appli-
cable. One option is to invert, say, X�x ,y ;�� with respect to
�. The resulting expression for � can then be inserted into
the equation for �y, allowing the usual equations for the
characteristics of nonlinear PDEs to be used. The disadvan-
tage of this approach is that it leads to highly involved ex-
pressions.

A simpler way of obtaining the characteristic equations is
by cross differentiation of the PDE. Setting �xy =�yx gives

Xy + X��y = Yx + Y��x.

This is a quasilinear first-order PDE for � of the form a�x
+b�y =c, for which the characteristic equations are dx /a
=dy /b=d� /c. In combination with the PDE for � itself, we
immediately find the set of characteristic equations,

dx

Y�

= −
dy

X�

=
d�

Xy − Yx

=
d�x

XxY� − X�Yx
=

d�y

XyY� − X�Yy
=

d�

�xY� − �yX�

.

�19�

At every point �x ,y� along a characteristic, the ratios of these
differentials determine the direction of its tangent in the
�x ,y� plane as well as the corresponding changes in �, �x,
�y, and � along the curve. The equations can easily be
solved numerically, e.g., by predictor-corrector methods. In
the present contribution, however, we will not concern our-
selves with numerical evaluations. Suffice it to say that a
straightforward implementation of these equations may re-
quire very small step sizes, and that an accurate evaluation of
the direction of the tangent may be difficult, in the vicinity of
points where X�=Y�=0; discretizations treating X� and Y� as
perturbations relative to, e.g., X�� and Y�� can be employed
there.

An important consequence of the equations given above
concerns the orientation of the characteristics in the �x ,y�
plane at special points: Evidently, wherever X�=0 and Y�

�0, the tangent is parallel to the x axis, i.e., y=const. By
locating the zeros of the � derivatives of the right-hand sides
of the PDE, we can thus rapidly gain a qualitative overview
of the geometry of the field of characteristic curves. Consid-
ering the path of integration in the �� ,Q� plane, pure HRT
obviously corresponds to characteristics at constant tempera-
ture, and pure SCOZA to those at constant cutoff. We will,
therefore, refer to these directions as HRT-like or SCOZA-
like, respectively.

For the PDE �8�, this directly implies the presence of a
SCOZA-like characteristic for Q=Q� and of an HRT-like
one at �=0; together they cover that part of the domain
where the solution corresponds to the reference system. In
addition, characteristics can have an HRT-like tangent only

in points where �̃�Q�=0, and by considering all orders in the
free parameter, it is seen that all characteristics have HRT-

like tangents whenever �̃�Q� vanishes at Q�Q� and �	0.
It is worth stressing that the significance of the character-

istic curves extends not only to the numerics: In addition to
the significance of shocks and rarefactions, neither of which
are expected in the present setting, the PDE is well-posed
only when the characteristics establish a one-to-one mapping
from the points at Q=0 to a subset of the boundary where the
solution and its first derivatives are known. It is then possible
to start out from the boundary and to integrate along those
curves until the final solution is obtained at vanishing Q.

1See textbooks on PDEs such as, e.g., Leon Lapidus, George F.
Pinder, Numerical Solution of Partial Differential Equations in Sci-
ence and Engineering �Wiley, New York, 1982�.
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But even for a stable and well-posed PDE, the character-
istics are of vital importance for the numerics, independently
of whether the discretization explicitly makes use of them:
According to the Courant-Friedrichs-Levy criterion �17�, any
numerical scheme that does not adhere to the flow of infor-
mation represented by the characteristics cannot be stable.

B. Characteristics for the MSA-like case

Even without prior knowledge of the generalized MSA
solutions presented in Sec. III, some progress can be made
towards the solution of Eq. �8� by using the characteristics of
the PDE alone. In the MSA case, the unknown parameter
function ��x ,y� of the preceding section corresponds to

e�� ,Q�.

1. Explicit results

The situation is most transparent when considering only
the limit of small z where Eq. �8� becomes to order O�z2�

�I

�Q
= F��Q�z ,

�I

��
=

1

�
F�Q�z ,

F�Q� = 4�C�
k	Q

�̃�k�k2dk .

After elimination of z and a change of variables from Q to F,
we obtain a PDE for I as a function of F and �, viz.,

F
�I

�F
− �

�I

��
= 0. �20�

The characteristics of this linear first-order PDE are deter-
mined by

dF

F
= −

d�

�
=

dI

0
,

which is trivially integrated to

F� = const,

I = const. �21�

The general solution of the PDE is then any functional rela-
tion between the two constants of integration above, i.e., I
can only depend on F�Q��,

I = I�F�Q��� . �22�

This is also the case for the solutions of Eq. �8� given in Sec.
III to first order in z. Equations �10� and �13� are both recov-
ered to first order in z by imposing I=0 for �=0.

The situation is only slightly more complicated when
terms of higher order in z are not neglected in Eq. �8�. We
can obtain an equivalent PDE by cross-differentiating the
Eqs. �8� and eliminating �2I /�Q��, as was done in Sec.
IV A. From the relations �8� and the definition �11�, we find

− 4�CQ2 �̃�Q�

1 − z�̃�Q�
� �z

��
	

Q

=
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�
� �J

�Q
	

�

or

1
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z
� �z

��
	

Q

=
1

�
�� �J

�Q
	

z

+ � �J

�z
	

Q
� �z

�Q
	

�

 .

Rearranging this yields a quasilinear first-order PDE for
z�� ,Q�, viz.,

1

z
� �J

�Q
	

z
� �z

��
	

Q

−
1

�
� �J

�z
	

Q
� �z

�Q
	

�

=
1

�
� �J

�Q
	

z

. �23�

As in Eq. �19�, the equation for the characteristics becomes

d�

1

z
� �J

�Q
	

z

= −
dQ

1

�
� �J

�z
	

Q

=
dz

1

�
� �J

�Q
	

z

.

This immediately gives zd�=�dz so that


e =
z

�
= const �24�

along the characteristics. The relation between dQ and dz
merely reproduces the total differential of J�Q ,z�, implying

J = const. �25�

The general solution of Eq. �23� is then any functional rela-
tion between z /� and J. It is easily seen that this is consistent
with the expression for 
e given in Sec. III B; constant 
e
=z /� and J=
eK also imply constant K so that 
e must be a
function of K only, just as indicated in Eq. �14�.

2. Implications of the characteristics

As pointed out in Sec. IV A, the PDE has a well-defined
and unique solution only when the characteristics establish a
one-to-one mapping of the target system at various tempera-
tures �Q=0,�	0� onto points where the solution is known
from a suitable boundary condition. For the PDE �8�, the
most natural condition to impose is provided by the reference
system, the properties of which must be recovered both at
�=0 and at Q=Q�. On the other hand, among the general
features of this type of PDE in Sec. IV A, we found that
these boundaries also coincide with the location of two char-
acteristics. Consequently, there can be no characteristic con-
necting a point on one of those boundaries with a target
system at nonzero �. At first sight, this seems to render the
reference system useless as a boundary condition. Indeed, for
the MSA-like solution considered here, Eq. �25� shows that
the reference system only determines the solution where J
=0, i.e., on the boundary itself.

However, this is not necessarily a severe problem as
I�� ,Q� is expected to be continuous everywhere, including
at the boundaries. The reference system therefore still pro-
vides a valid description for systems removed from the
boundaries by a very small amount, where the characteristic
may have a direction different from that of the boundary and
may actually lead to the target system at nonzero �. In this
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case, the reference system may still be used as a boundary
condition; an example where even an infinitesimal separation
is sufficient will be given in Sec. IV C. This situation echos
the one found in continuum fluids in HRT: For those systems
it has always been necessary to start numerical integration of
the equations at some large but finite cutoff Q�, typically on
the order of 102 /�, where � is a length characteristic of the
repulsive hard core reference interaction �7,18�. Neglecting
the contribution of very high wave number fluctuations has
never been a practical problem, nor is this expected to be the
case here.

In order to investigate whether a purely numerical solu-
tion is possible for the MSA-like equations considered in
Sec. IV B 1, let us consider the results obtained by expand-
ing the PDE to first order in z, valid in the limit of high
temperature. For the moment assuming ��0��0, there are
potentials such that F�Q� vanishes only for Q=Q�. In this
case, I may be prescribed for all � at some fixed Q�Q�, the
characteristics stay at finite � at all lower Q, and the solution
at Q=0 can be obtained at every temperature.

On the other hand, F will be an oscillating function of Q
for many short-ranged interactions, especially when the core
condition is approximately taken into account by demanding
��0�=0, cf. Sec. II B. At high temperature, the field of char-
acteristics then qualitatively looks as sketched in Fig. 1.

An important but unfortunate feature of that sketch are the
SCOZA-like characteristics starting at �=0, whenever
F�Q�=0: These sectorals, as we shall call any characteristic
the tangent of which at �=0+ has a nonvanishing component
in the � direction, divide the domain of the PDE into a se-
quence of sectors. As there are no characteristics that cross
from one sector into a neighboring one, no information is
transmitted across a sectoral, and the solutions in adjacent
sectors are largely independent. The special significance of
these characteristics comes from the fact that the solution for
the target system �Q=0� is determined by a boundary condi-

tion only when both lie in the same sector.2 Furthermore, the
SCOZA-like orientation of a sectoral means that the solution
along it cannot depend on Fourier components of the inter-
action at other Q in the high temperature limit.

For lower temperatures, we have to use the full solution.
According to Eq. �25�, the sectorals are the curves where J
=0. As we further follow along them, their direction will no
longer be SCOZA-like, and the solution along them will de-
pend on a range of Fourier components. Still, one of the
properties that can be inferred from the temperature depen-
dence of the J integral is that no sectoral can ever get to Q
=0 at nonzero �, since J	0 there.

This feature of the sectorals also conforms to our expec-
tation for a realistic closure relation. For suppose that some
sectoral starts at �=0 and intermediate Q	0 and finally
reaches Q=0 at �=�s	0. Clearly it can only cover a finite
Q interval so that the solution at Q=0, �=�s cannot depend
on Fourier components of the interaction outside this Q
range. Absence of crossings of characteristics immediately
implies that the same is also true for the properties of the
target system at all ���s. This situation is clearly unaccept-
able except for �s=0.

Another consequence of the temperature dependence of
the J integral is the absence of sectorals at given Q for �
above some Q-dependent limit; this limit is generally higher
for larger Q. There are then only a few classes of admissible
configurations of the characteristics in the �� ,Q� plane. Most
likely, the sectorals are either driven towards infinite � at
ever higher Q, or pairs of neighboring sectorals join at their
shared maximum � and so form loops; in the latter case, the

maximum � occurs at a cutoff where �̃�Q�=0. Unfortu-
nately, both of these possibilities are highly problematic: If
sectorals stay separate but go towards infinite � and Q, there
can be no finite temperature characteristic connecting a point
close to the reference boundary with one at Q=0, �	0. If,
on the other hand, sectorals form loops, the same problem
will arise at high cutoff. In addition, loops demarcate regions
that are not entered by characteristics, implying rarefactions
for �→0.

C. Connecting reference and target systems

The properties of the characteristics just inferred for the
MSA case studied here are certainly unexpected and disap-
pointing because they do not allow us to go from the refer-
ence system at Q=Q� to the target system at vanishing Q.
We now show that this is not so much a general defect of the
combination of the energy and fluctuation routes, but a con-
sequence of the specific parametrization of the consistency
problem. To see this, let us consider an arbitrary closure
relation to the Ornstein-Zernike relation �3�, giving the cor-
relation functions c and g=h+1 for any combination of Q, �,
and some unknown parameter ��� ,Q�. For example, the

2This is not the case for the analytical solution of Sec. III B as
constancy of the An is built right into Eqs. �13� and �14�. It is then
possible to use a boundary condition to determine the An in one
sector and to use their values in another one.

FIG. 1. Sketch of the characteristics for the MSA-like solution
to first order in z: Dashed lines show the characteristics whereas the

dotted lines give the locus of �̃=0 where the characteristics have an
HRT-like tangent. Sectorals are marked, as are the limits where the
target and reference systems are recovered and the characteristics at
�=0 and Q=Q�. The inset gives the directions corresponding to
pure HRT and SCOZA, respectively. There may or may not be a
sectoral at Q=0, depending on whether ��0� vanishes or not. As
expected, there are no rarefactions, nor are there crossings of char-
acteristics except at �=0.
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MSA case considered so far corresponds to the direct corre-
lation function

c̃ =
1

�
−

�



+ ��k − Q�ṽ, � =





e
.

Another simple possibility is

c̃ =
1

�
−

1



+ �� + ��k − Q��ṽ .

This is suggested by the usual HRT recipe for the continuum
case when the core condition is not explicitly taken into ac-
count �4,13,19,20�.

In this more general situation with unspecified closure,
the correct PDE is given by the earlier relations �4� and �5�,
except that the energy integral must be restricted to k	Q
and that 
̃ now depends not only on k, �, and Q but also on
the free parameter function ��� ,Q�. As noted in Sec. II B,
the core condition must be fulfilled at every Q if the simple
expression �5� is used or else there will be an unphysical
contribution to the internal energy from r=0.

In general, 
̃�k� is continuous at k=Q, whereas the direct
correlation function c̃�k� of the system corresponding to cut-
off Q has a discontinuity of height ṽ�Q� there. The relation
between 
̃ and c̃ is obtained from Eq. �6� by restricting the
interaction to k�Q again,

� + �2h̃�k� =

̃�k�

1 − 
̃�k�ṽ�k���k − Q�

or

c̃�k� =
1

�
−

1


̃�k�
+ ṽ�k���k − Q� .

Without further specifying the closure, a number of proper-
ties of the characteristics can easily be deduced: As the un-
known parameter � enters Eq. �8� only through c̃, we imme-
diately see that the HRT-like characteristic at �=0, the
SCOZA-like characteristic at Q=Q�, and the HRT-like direc-

tion of the tangents of all characteristics whenever �̃�Q�=0
remain in this general setting.

Both for discrete and continuous systems, the question is
then whether these boundary conditions at large but finite
cutoff determine the solution at Q=0. We have just seen that
this is usually not the case for the PDE �8�. As pointed out
before, the boundary conditions must be imposed in the same
sector where the target system’s properties are to be recov-
ered. For this to be possible and the reference system to
provide a valid initial condition for the integration of the
characteristic equations, it is necessary but not sufficient that
there be no sectorals above the initial value of Q, nor be-
tween the boundary condition and the target system.

We then have to consider the existence and distribution of
sectorals once again, which crucially depends on the precise
way in which the free parameter enters the equations. As an

example, let c̃ex�k ;� ,Q� and h̃ex�k ;� ,Q� be the direct and
total correlation functions for any solution of the PDE such
as, e.g., any of those presented in Sec. III. Inserting either of
the two sample closures

c̃�k;�,Q,�� = c̃ex�k;�,Q� + ��f1�k� − f1�Q�� �26�

and

h̃�k;�,Q,�� = h̃ex�k;�,Q� +
�

�̃�k�
�f2�2k − Q − Q��

− f2�Q + Q� − 2k�� �27�

�with largely arbitrary functions f i� into Eqs. �4� and �5�
yields a PDE for ��� ,Q�. Obviously, the solution is �=0 for
all � and Q in either case so that the original solution is

reproduced, c̃= c̃ex and h̃= h̃ex. According to Eq. �19�, how-
ever, for Eq. �26� the characteristics are HRT-like every-
where �d�=0, so that there are no sectorals at all�, whereas
they are all SCOZA-like everywhere for Eq. �27� �dQ=0, so
that there are infinitely many sectorals�. Artificial and im-
practical as these examples are, they demonstrate that two
different parametrizations of one and the same solution may
have vastly different consequences, and Eq. �26� in particular
shows the potential for a closure free of sectorals.

V. NECESSARY CONDITIONS FOR WELL-POSEDNESS

We therefore conclude that the difficulties encountered in
the case studied in Sec. IV B are not inherent in the consis-
tency problem, but merely a consequence of the particular
MSA-like closure used. The results of our investigation thus
leave open the possibility of a practical scheme, drawing our
attention to the precise parametrization of the solution.

While formulation of practical closure relations to be used
together with Eq. �8� lies outside the scope of the present
contribution, we can give two general nontrivial conditions
that an ansatz for c̃ must fulfill for the consistency problem
to be well-posed and for a unique and differentiable solution
to exist at all �
0, Q
0: �i� There must not be any secto-
rals in the sense of the definition given in Sec. IV C; and �ii�
any characteristic passing through a state with 0��=O��� at
some Q	0 must remain at a strictly positive inverse tem-
perature � of order O��� at lower cutoffs. While the former is
quite obvious in the light of Sec. IV B 2, the second condi-
tion has not featured prominently so far: It merely expresses
the absence of rarefactions and shocks at infinite tempera-
ture, and for the MSA case as treated here these already
imply sectorals, cf. Sec. IV B 2.

Both of these criteria share the advantage of involving
only the limit �→0. They can therefore be checked by low
order expansions in �, which vastly simplifies analysis of the
suitability of some specific closure relation in the context of
Eq. �8�.

Another important property is that both of them are quite
general: Not only do they apply to discrete and continuous
systems equally, they are also independent of the particular
simplifications that we chose to make in the present contri-
bution. In particular, a closure may give a solution where the
core condition is violated, leading to a spurious contribution
to the energy integral of Eq. �5�. In this case, more care
should be exercised when evaluating the internal energy,
leading to a modification of the PDE �21�. The two condi-
tions set out above, however, remain equally valid neverthe-
less.
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A careful study of the characteristics, especially of their
compliance with the criteria just set out, is thus of vital im-
portance for the consistency problem involving the energy
and fluctuation routes only. The results of such an analysis
are also highly relevant when the compressibility route en-
ters the picture. Suppose that I�� ,Q ,�� is the solution of the
more elaborate PDE so obtained. By evaluating �2I /��2 and
inserting this into the compressibility sum rule used in both
pure HRT and pure SCOZA, we arrive at a constraint involv-
ing both of the two unknown parameters in the parametriza-
tion of the solution at any �� ,Q ,��. Restriction to fixed den-
sity in the spirit of the line method then again leads to a
problem of the type considered here, and the properties of
the characteristics of this restricted problem must be taken
into account when solving, or discretizing, the PDE. In par-
ticular, the density dependence of the directions of the char-
acteristics in the �� ,Q� plane are then of prime importance
for the numerical tractability of the PDE by finite difference
methods. At this point, however, it is not clear how to handle
the situation where � does not increase monotonously along
the characteristics, nor do we know whether that case actu-

ally occurs with physically plausible closure relations and
interactions.

In summary, in the present contribution we have intro-
duced and started to tackle the problem of unifying SCOZA
and HRT, pointing out the importance of the condition of
consistency between free and internal energies and for the
time being setting aside consistency with the isothermal
compressibility. A simplified lattice model system allowed us
to derive a suitable PDE and to study its known analytical
solutions of MSA type. In general, however, we cannot as-
sume an analytical solution to be available, and we therefore
then turned to the problem of solving the PDE without pre-
vious knowledge of the exact solution, especially with a
view towards a numerical implementation: This highlighted
the importance of the characteristic curves of the PDE, and
we have studied some of their properties and consequences.
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